Classify the origin and assess its stability of the solutions of $\mathbf{z}' = \mathbf{A}\mathbf{z}$ given the eigenvalues and eigenvectors of \mathbf{A} . (And sketch trajectories if you are interested.)

1.
$$\lambda_1 = 3$$
, $\lambda_2 = 2$, $\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$
2. $\lambda_1 = 1$, $\lambda_2 = -1$, $\mathbf{v_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$
3. $\lambda_1 = -3$, $\lambda_2 = -1$, $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

For Questions 7 - 10 in Problem Set 11.2, classify the origin and assess its stability. (And sketch trajectories if you are interested.)

7.
$$x' = 2y, y' = x + 3y$$

8. $x' = -5x + 10y, y' = -4x + 7y$
9. $x' = x - 2y, y' = -4x - y$
10. $x' = -10x + 4y, y' = -3x - 2y$